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Introduction 
 
 
 
 
A conformal antenna or a periodic structure can be defined as a structure which conforms to a 
surface whose shape is mainly determined by considerations other than electromagnetic, e.g. 
aerodynamic or hydrodynamic considerations [1]. In other words, conformal structures can be 
mounted on various airborne objects (fighter jets, smart missiles, rockets) without disturbing 
their aerodynamical properties. This definition should be broadened with antennas or periodic 
structures whose shape is not planar and is determined with specific electromagnetic reasons like 
coverage requirements. For example, arrays on cylindrical structures offer a possibility either to 
create directed beams in arbitrary direction in horizontal plane, or to create an omnidirectional 
pattern [1]. Spherical arrays have the capability of directing single or multiple beams through a 
complete hemisphere. Therefore, spherical arrays are a good candidate for satellite terminals, 
telemetry and command applications, performed from a ground station [2], [3]. Curved periodic 
structures are mainly used in multi-frequency reflector systems where one reflector is reflective 
in one frequency band and it is transparent in another frequency band [4]. Curved periodic 
structures are also used in realization of frequency selective radomes, i.e. radomes that provide 
mechanical and electromagnetic protection.  
 

Analysis methods for planar frequency selective surfaces (FSS) have matured and are nowadays 
commonly included in many commercial electromagnetic solvers. Curved FSS on the other hand 
is still however quite a hot topic. The main reason for such a situation is that the fundamental 
properties of planar FSS, namely the periodicity and the infinite extent of the surface, are lost 
when analyzing curved FSS. The absence of this infinite periodicity means that the analysis can 
no longer be simplified by observing only a single unit cell, and therefore the analysis of the 
entire FSS has to be done at once. 

 
Curved FSS are mostly used for obtaining frequency selective subreflectors in multifrequency 
reflector systems, or for making frequency selective radomes (Fig. 1.1). In the first case, curved 
FSS allows the reflector system to be used for dual (or more) frequency bands, i.e. there is a 
separate feed antenna for each frequency band. In the second case, curved FSS enables 
mechanical and electromagnetic protection of objects (mostly antennas) inside the radome. 
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(a)       (b) 
 
Figure 1.1 Applications of curved FSS: (a) multifrequency reflector system; (b) frequency 
selective radome. 
 
Since structures (radomes or reflectors) that contain FSS are electrically very large, the 
geometrical optics is commonly used for the analysis. In this classical approach, a bundle of rays 
is launched from the source (usually an antenna inside the radome or an antenna exciting a 
subreflector). Each ray is traced forward from the source to the curved FSS. The transmitted ray 
is determined by considering the transmission coefficient of the equivalent planar FSS. The far 
field is then obtained by implementing the equivalence principle. The main drawback of this 
approach is that the transmission through the structure is calculated using the locally planar 
approximation, ignoring the influence of the curvature and the finiteness of the FSS on its 
transmission/reflection properties. 

FSS (i.e. the large finite array) in the proposed new approach is divided into N subarrays that are 
separately analyzed using a rigorous full-wave method. The subarrays have to overlap because 
the same element in a subarray will have different induced physical or equivalent currents 
depending on whether it is simulated as an inner element or an edge element, since the edge 
elements “do not see” the rest of the array environment. The scattered field is calculated as a 
superposition of the electromagnetic field radiated by the inner parts of N subarrays. This divides 
an extremely large-scale electromagnetic problem into a sum of simple (small-size) problems 
and allows the possibility to analyze a general conformal FSS structure using such overlapping 
subarrays, that is, spherical periodic structures of an appropriate (local) radius of curvature. 
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Project objective and realized outcomes 
 
 
 
 
We have proposed a 12-month effort to develop software for analyzing curved frequency 
selective surfaces (curved FSS) mounted on single- and double-curved structures. Two types of 
periodic structures are to be analyzed: structures with patches and structures with apertures. The 
developed program is planned to calculate the following characteristics: (a) reflection (radar 
cross-section) from the curved structure, (b) transmission (radiation pattern) through the curved 
structure, (c) losses due to the presence of the periodic structure. Our starting point were the 
existing MoM based programs for analyzing patch arrays placed on cylindrical and spherical 
structures (programs CyMPA and SMiSPA that were developed under the projects F61775-99-
WE040 and FA8655-04-1-3050) and in a way this project is a continuation and an upgrade of 
these programs. 
 
The realized outcomes of the project are: 
 

• Program “cFSS” that analyzes spherical frequency selective periodic structures 
consisting of circular ring elements. Circular rings as elements for building curved FSS 
were selected due to their good polarization and resonant frequency properties. The 
program calculates: 

 
o Current distribution at each ring in the subarray of the analyzed FSS without 

mutual coupling taken into account, 
o Current distribution at each ring in the subarray of the analyzed FSS with mutual 

coupling between the ring elements rigorously taken into account, 
o Scattered field of the analyzed subarray with and without mutual coupling taken 

into account, 
o Transmission coefficient of the analyzed subarray, 
o Electromagnetic properties of the whole curved FSS structure, obtained by 

calculating scattered electromagnetic field of the whole FSS (the needed current 
distribution is obtained by solving a set of subarray problems), 

o Radiation pattern of the FSS reflector system where the primary feed is 
characterized with the known far-field radiation pattern, 

o Radiation pattern of the FSS radome system where, as FSS elements, circular 
annular apertures are considered (so-called dual problem).  
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Due to the complexity and the size of the analyzed problems a series of numerical acceleration 
techniques is used in order to trim the computation time. First, the analyzed conformal FSS is 
divided into overlapping spherical subarrays of an appropriate (local) radius of curvature. This 
approach is significantly more efficient because such smaller subarrays are much easier to 
analyze, and also allows the possibility to analyze arbitrary conformal structures. In the final step 
of the algorithm these subarrays with their parameters are all merged together into a global MoM 
matrix which when solved gives the solution of the entire problem. 
 
Next, in order to efficiently calculate the mutual coupling terms, needed for every pair of 
elements in the array, we introduce two additional potential like auxiliary functions, which 
contain the information about the coordinates only in respective arguments of a product of 
Legendre and exponential functions. The simplification is achieved through application of the 
additional theorem for associated Legendre functions, which allows the functions to be 
transformed from one coordinate system to another very easily. This results in a significant 
reduction in the number of evaluations of the highly oscillating integrals, which are needed when 
evaluating element-to-element interaction. Apart from the significant reduction in computation 
time this method proved to be also more accurate compared to the standard element-by-element 
approach. 
 
Finally, in order to further reduce the computation time a hybrid method was developed, which 
combines the spectral domain approach with either a basic free space method or Uniform Theory 
of Diffraction, a choice that depends on the actual analyzed problem. The essential idea of this 
hybrid method is to extract the slowly varying core of the Green’s function from the MoM 
coupling integrals and calculate it using an appropriate simpler and faster method. The reason for 
introducing this step is in the fact that the used spectral domain approach is an excellent choice 
for analyzing multilayered problems only to a certain structure size (compared to wavelength). 
For larger problems the method is extremely time consuming, and therefore not practical for FSS 
analysis. The needed acceleration is achieved through the mentioned extraction, and the use of 
simpler methods for the extracted analysis problem that, consequently, have to approximate the 
multilayered structure with a homogeneous space.  
 
All together these techniques allow that a very large FSS structure can be analyzed in reasonable 
time, thus saving the time needed to be invested into the development of such structures. 
 
The developed programs are written in FORTRAN program language since there is no faster 
programming language for computational physics (i.e. computational electromagnetics). The 
program is independent of the machine, and can be compiled and ran on every machine that has 
a FORTRAN 90 compiler. Furthermore, for MS Windows PC environment, a graphical user 
interface is developed to allow for easier setting of input parameters, and to obtain graphical 
presentation of the results. On other machines or operating systems communication with the 
program is made via input/output ASCII files. In more details, the input file should be filled 
before running the program, and the results are written into the output file that can be graphically 
presented by any data displaying program. 
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3.1 Analysis of frequency selective surfaces  
on spherical structures 

 
 
 
 
 
 
 
3.1.1 Introduction  
 

The approaches to the analysis of curved FSS can be divided into several groups [4]: 
 

1. Finite structure approach  
In this approach there are no simplifications, current distribution on each element in the 
array environment is rigorously determined. In order to obtain that, special mathematical 
techniques are needed for such a large-scale problem. Furthermore, this approach will 
require large computational time, which is not practical in the design process. 

 
2. Spherical-wave spectrum approach 

In this approach the incoming electromagnetic waves are represented as sum of spherical 
wave harmonics. Therefore, transmission and reflection coefficients of curved FSS are 
locally determined for each spherical wave using local curvature and periodicity 
information. 
 

3. Locally planar FSS approach 
This is the simplest approach (and therefore less accurate). The ray techniques are used to 
represent the radiation pattern of the antenna inside the radome or of the feed antenna of 
the reflector system. The amplitude and the phase of each ray are corrected using 
transmission and reflection coefficients of the equivalent planar FSS, and the final 
radiation pattern is obtained using physical optics (PO) principle. The main drawback of 
this approach is that the transmission through the structure is calculated using the locally 
planar approximation, ignoring the influence of the curvature and the finiteness of the 
FSS on its transmission/reflection properties. 
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Our approach belongs to the second group. The curved FSS (i.e. the large finite array) is divided 
into N subarrays, which are separately analyzed using a rigorous full-wave method. Each 
subarray is locally approximated as a spherical FSS with a local radius of curvature (see Fig 3.1) 
The subarrays have to overlap because the same element in a subarray will have different 
induced physical or equivalent currents depending on whether it is simulated as an inner element 
or an edge element since the edge elements “do not see” the rest of the array environment. The 
scattered field is then calculated as a superposition of the electromagnetic field radiated by the 
inner parts of N subarrays. This divides an extremely large-scale electromagnetic problem into a 
sum of simple (small-size) problems. Consequently, we obtain the possibility to analyze a 
general conformal FSS structure using overlapping subarray approach, that is, by analyzing 
spherical periodic structures of an appropriate (local) radius of curvature. 

The FSS structures considered in this paper are composed out of circular ring elements because 
of their good polarization properties and insensitivity of their resonant frequency on the angle of 
the incident plane wave [5]. 
 
 

 
 
Figure 3.1. A doubly curved frequency selective radome with circular ring elements. Locally, 
the curved FSS can be approximated as a spherical FSS.  
 
 
3.1.2 Method of Analysis 
 
The geometry of the problem is given in Fig. 3.2.  Circular rings of average radius R (radius to 
the center of the conductor) and conductor width W are embedded in a spherical structure. The 
coordinates of the ring center are θ = θ ring and φ = φ ring. All rings have the same dimensions 
and their position can be obtained by rotating the central ring (the red ring in Fig.3.2.) around the 
sphere center. In other words, the center of the central ring is defined with θ ring = 0°. Notice that 
there is no simple expression for the ring coordinates of a generally positioned ring. The rings 
are distributed along a hexagonal grid (as shown in Fig. 3.2.a) or along an icosahedral grid (Fig 
3.2.b), which in both cases approximates the triangular grid of the equivalent planar FSS. 

⇒
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         (a)        (b) 

Figure 3.2. Geometry of the spherical FSS; (a) hexagonal structure, (b) icosahedral structure 
 
The analysis approach is based on solving the integral equation for the electric field (EFIE), and 
on the moment method (MoM), where the elements of the MoM matrix are calculated in the 
spectral domain. We have selected entire-domain basis functions to represent the ring current, 
and the test functions were chosen following the Galerkin’s approach.  

Planar, circular-cylindrical and spherical multilayer structures can be analyzed by applying the 
adequate version of a two-dimensional Fourier transformation to both currents and EM fields in 
the directions where the structure is homogeneous [6], [7]. In the cylindrical case the Fourier 
transformation in the axial direction and Fourier series in the φ direction is applied, while in the 
spherical case (see Fig. 1) one performs the vector-Legendre transformation in θ and φ directions 
[8], [7]. Consequently, the EM fields excited by one spherical component have the same 
harmonic variation as the source, and the original three-dimensional problem is transformed to a 
spectrum of one-dimensional problems, which is much easier to solve.  
 
The vector-Legendre transformation is defined as [8], [9] 
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Here )(cosθm
nP  denotes the associated Legendre function. Comparing to the original definition 

from [8], we have extended the definition of vector-Legendre transformation to include the r 
vector component and we have included the same factor ),(21 mnSπ  in both forward and 
inverse transformation in a symmetric way [9]. Furthermore, as a second step in obtaining 
numerically stable procedure, we have introduced normalized Legendre polynomials | |m

nP  and 
their derivatives as [9] : 
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Notice that for the normalization factor we have chosen the rapidly growing term inside the 
term ( , )S n m  (see eq. (1.d)). The term  ),(/ mnSL  in  expressions (1a) and (1b) enables us to 
calculate normalized Legendre polynomials instead of Legendre polynomials, and  
2n(n+1)/(2n+1) instead of S(n,m), both of them being numerically stable. Thus, divisions of very 
large numbers are avoided. 
 
The recursive equations for the normalized Legendre polynomials and their derivatives are: 
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The unknown current distribution is determined by solving the electric field integral equation 
(EFIE) numerically via Method of Moments (MoM). The elements of the MoM matrix are 
calculated in the spectral domain 
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where ),,(~ mnrringJ  represents the basis and test functions in the spectral domain.  
 
There are two basic approaches to determine the Green’s function of general multilayer 
structures: either to analytically derive an expression for it and then to code that expression, or to 
develop a numerical routine for the complete calculation. The analytic approach requires less 
computer time than the numerical approach. However, it is a very laborious process to 
analytically determine the Green's functions for substrates with more than two layers.  Therefore, 
in such cases it is convenient to use a numerical algorithm that determines the Green's function 
directly. Another disadvantage of the analytic approach is that it is valid only for a very specific 
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geometry, so that a new derivation of the Green's functions is needed for even a slight change in 
the geometry, for example if the rings are rearranged inside the multilayer structure. For that 
reason we have developed the G1DMULT algorithm that calculates the spectral-domain Green's 
functions for planar, circular-cylindrical and spherical multilayer structures, i.e. the algorithm 
uses advantages of transforming the problem to the spectral domain. More details about the 
G1DMULT algorithm are given in [7].   
 
The far field radiation pattern of a single ring element is obtained as follows. If we consider the 
θ- and φ-component of the electric field in the outermost region with the r-coordinate larger than 
the r-coordinate of the ring, we have only outward-traveling waves described by the Schelkunoff 
spherical Hankel function of the second kind )(ˆ

0
)2( rkH n  [6], [10]. Therefore, in the outermost 

region we can relate the θ- and φ-component of the electric field with different r-coordinates r1 
and r2 (r1>>r2) as  
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Here r1 represents the r-component of the far field pattern. For numerical reasons it is practical 
to select the value of r2 a bit larger than the radius of the whole antenna structure. The final 
solution is obtained by superposing all spectral solutions, see eq. (1b). The equations (5a) and 
(5b) can be easily obtained from the general EM field representation for spherical multilayer 
problems [7]. 
 
The radiation pattern of the array is obtained as a superposition of the fields excited by each ring. 
For that purpose it is convenient to introduce local coordinate systems with the origins located at 
the center of each ring. The local coordinate system “follows” the ring when it is moved from the 
central position, i.e. the z’ axis of the local system is oriented normal to the ring center. The 
coordinates in the local coordinate system are determined using the following equations (see [11] 
for details) 
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where αn and βn are the θ- and φ-coordinates of the center of each ring in the global coordinate 
system. The unit vectors in the local coordinate system can be determined from the following 
equations 
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Combining equations (6) and (7) one gets the θ- and φ-field components of the field excited by 
the antenna element with center coordinates (αn , βnm )  
 

(8a) 
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Here fθ and fφ represent the θ  and φ components of the far field pattern of the central ring (i.e. of 
the ring with the center at θ = 0). 
 

3.1.3 Definition of the transmission coefficient 

The transmission coefficient T for the curved FSS constructed out of circular ring elements is 
defined as the ratio of the magnitude of the total E-field (incident and scattered) at the point z, 
and the magnitude of the E-field due to the aperture field alone (i.e. in the absence of the array) 
[14]: 

aperture

aperturescatt

T
E

EE +
= .       (9) 

The incident field apertureE  in the upper expression is calculated as the far field at a distance z in 
the axial direction radiated by a circular aperture uniformly illuminated with a field of unit 
amplitude. It can be shown that the field apertureE  is equal: 
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z

jkR −=
2

2

E ,      (10) 

where apertureR  is the radius of the equivalent circular aperture described in Fig. 3.10. In the case 
of curved FSS printed on a dielectric, the influence of the dielectric slab is included in Eaperture. 

 

 
Figure 3.3. Definition of the equivalent aperture needed for transmission coefficient calculation. 
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3.1.4 Mutual coupling calculation 
 
For the centered ring (i.e. for the ring with the center at the pole), the basis/test functions have 
simple domain boundaries and it is easy to calculate their vector-Legendre transforms. However, 
when calculating the mutual coupling between the rings one needs to calculate the vector-
Legendre transforms of the basis and test functions with the domain on the ring located at an 
arbitrary position on the sphere. One approach is to numerically calculate the needed terms using 
the formulas that connect the global and local coordinate system. In more details, the vector-
Legendre transform of the basis/test function located at the displaced ring is: 
  

φθθφθθφ ′′′′⋅= ∫∫ ddrmne
S(n,m)π

mnr ringi
jm

ringi sin)',,(),,(
2

1),,(~

patch

JLJ   (11) 

 

where θ  and φ  are coordinates in the global coordinate system, and the pair θ’ and φ’ are 
coordinates in the local coordinate system. To illustrate this division into global and local 
coordinates, equation (11) is written once more as: 
 

4444 34444 2144 344 21
scoordinate localscoordinate globalpatch

sin)',,(),,(
2

1),,(~ φθθφθθφ ′′′′⋅⋅= ∫∫ ddrmne
S(n,m)π

mnr ringi
jm

ringi JLJ   (12) 

 

Note that both matrix L and basis functions Ji are written with respect to the basis ( )ˆ ˆ ˆ, , re e eθ φ , 
which is the basis of the global coordinate system. The connection between local and global 
coordinate system is given by the following equations [11]: 
 

cos sin sin 'cos ' cos cos 'n nθ α θ φ α θ= − +                                           (13a) 
 

( ) cos sin 'cos ' sin cos 'cot
sin 'sin '

n n
n

α θ φ α θφ β
θ φ

+
− = ,                          (13b) 

 
where αn and βn are the θ- and φ-coordinates of the center of each ring in the global coordinate 
system. Notice that the local coordinate system “follows” the ring when it is moved from the 
central position, i.e. the z’ axis of the local system is oriented normal to the ring center. The 
connection between the unit vectors in the global and the local coordinate system is [11]: 
 

' '
cos sin cos( ) sin cos sin sin( )ˆ ˆ ˆ

sin ' sin '
n n n n ne e eθ θ φ

θ φ β θ α α φ β
θ θ

α − − −
= − −     (14a) 

 

' '
sin sin( ) cos sin cos( ) sin cosˆ ˆ ˆ

sin ' sin '
n n n n ne e eφ θ φ

α φ β θ α φ β θ α
θ θ

− − −
= −      (14b) 

 
Unfortunately, this approach is very time consuming since for each considered basis/test 
function one needs to calculate a double integral of rapidly varying functions (for large m and n 
associate Legendre functions and exp(-jmφ) are highly oscillating).  
 
In order to make a more efficient program we have established the following relationship 
between the vector-Legendre transformation of the basis/test functions with the domain on the 
central ring (i.e. ring center is defined by θ = 0°), and on the ring whose center has coordinates θ 
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= αn, φ  = βn = 0.   As a first step, two functions iJ
rA  and iJψ  are defined for a basis function Ji 

located at the central ring 
 

)).,,(()),,(ˆ(),,( φθψφθφθ ring
J

ringring
J
rringringi rrrArrr ii ⋅∇+×∇=J   (15) 

 
In spherical coordinate system equation (4) can be written as 
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At the same time, the basis and test functions can be written as (the direct implementation of the 
inverse vector-Legendre transformation): 
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If we compare the equations (16) and (17), we can see that the functions iJ
rA  and iJψ  have the 

following form: 

φ
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  (18) 

 
The chosen representation is similar to the representation of the electric field via vector and 
scalar potentials. Note that these formulas do not depend on coordinate system, i.e. they are valid 
in both global and local coordinate systems. We can connect the representation of iJ

rA  and iJψ  
in different coordinate systems using the following property of the associated Legendre functions 
[12]: 
         

φφ θθθ jkk
n

n
km

n

nk

kmjmm
n ePP

kn
knj

mn
mnjeP −

−=

−′−

+
−

−
+

=′ ∑ )(cos)(cos
)!(
)!(

)!(
)!()(cos 12,          (19) 

 

The function , 12(cos )n
m kP θ  is defined in [12] and θ12 is the angle between the global and the local 

coordinate system (notice that local coordinates have the prime in notation; the φ-coordinate of 
the center of the displaced ring is zero). 
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Consequently, by relating equations (18) and (19), one can derive the following form of iJ
rA  and 

iJψ  with the domain at the displaced ring 
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  (20) 

 

The basis and test functions in the spectral domain at the displaced ring (with the θ12 coordinate 
of the ring center) are simply obtained by eq. (15), i.e. terms 1212 ~and~ θ

φ
θ
θ ii JJ  represent the 

vector Legendre transformation of the basis/test function located at the displaced ring. In the 
derivation of the equation (20) we have used the following property of the n

kmP ,  functions: 

).(cos)(cos 12,12, θθ n
km

n
km PP −− =  

 
If the ring center has the φ-coordinate different from zero, we can easily express the vector-
Legendre transforms of basis/test functions using the following property of Fourier series 

1 2( )
1 2( , ) ( , ) jm

i in m n m e β β−=J J% % . In other words, when considering a set of rings with the same θ 
coordinate, one needs to calculate the vector-Legendre transforms of basis /test functions for one 
ring only. 
 
Finally, in order to implement equation (20) one needs to somehow calculate functions 

, 12(cos )n
m kP θ . It is convenient to use recurrence formulas for such purposes under the condition 

that they are numerically stable. The applied recurrence formula is [12]: 
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The applied method for calculating spectral representation of basis/test function is illustrated by 
the flow chart in Fig. 3.4.  
 
Note that the same approach can be applied to various other electromagnetic problems in which 
spherical wave representation of the fields is used. For example, a plane wave impinging on a 
sphere at any angle can be expanded into spherical harmonics and transformed to spectral 
domain easily by following the same procedure. First, one needs to find the equivalent current 
sources of a z-traveling plane wave located on a sphere with radius larger than the considered 
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structure (this sphere represents the outer boundary of the area of interest). The equivalent 
sources are then rotated for a considered angle [13].  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4. Flow chart of the method for calculating spectral representation of basis function 

 
 
We wanted to evaluate and compare the accuracy of the developed method and the numerical 
integration approach (Fig. 3.5). We compared the values of Zjj term associated with the dominant 
entire-domain basis function (equation (4)) when the ring is located at the pole (θ = 0°) and at an 
arbitrary angle θ. Since Zjj represents the self-coupling term, its value should be the same in all 
considered cases. Therefore, the value of Zjj term for the ring located at the pole is taken as a 
reference value when calculating the relative error. The structure dimensions are the same as in 
the previous example; the radius of the ground plane is 1.0 λ. It can be seen that the new method 
based on the potential-like auxiliary functions has significantly higher accuracy compared to the 
numerical integration approach. Of course, the accuracy of the latter could also be improved by 
adding more integration points, but at the expense of increased computation time. Here, it should 
be pointed out that the new potential–like based approach is already faster than the numerical 
integration approach by more than two orders of magnitude.  
 

Spectral representation of basis&test 
functions located at central ring 

Potential-like representation             
of central ring current 

Potential-like representation of current    
at arbitrarily located ring 

Spectral representation of basis&test   
functions on arbitrarily located ring 
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Figure 3.5. Accuracy of calculating self-coupling term Zjj for basis and test functions located at 
rings with different θ-coordinates. 
 
 
3.1.5 Hybrid method for the analysis of curved FSS 
 
In order to reduce the number of terms in the Fourier series or vector-Legendre series and to 
reduce the length of integration in the Fourier transformation we have combined spectral domain 
method with several asymptotic methods using asymptotic extraction. The basic idea is to 
subtract the asymptotic part of the Green’s function for the analyzed structure, and to calculate it 
separately [15]. The so-called asymptotic part carries the major contribution to the overall 
Green’s function and the part left after the subtraction is basically the higher-order mode 
contribution. In essence this means that the asymptotic part is a rough approximation of the 
analyzed structure without some fine details, multiple layers etc. The major benefit of this 
approach is that the asymptotic part because of its “simplicity” can now be calculated using a 
more straightforward methods which can be faster and consume much less computer resources.  
 
To illustrate the concept lets consider the mutual impedance term in the MoM matrix for the 
spherical FSS: 
 

),,(~)|,,(
~

),,(~2 mnrrrmnmnrrZ ringiring
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T
jringji JGJ∑ ∑
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∞
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−−= .  (22) 

 
 First we have to extract the asymptotic part and split equation (22) into two parts, 
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By subtracting the asymptotic part from the overall Green’s function of the observed structure 
only the higher order contribution will be evaluated in the first term and the second term can 
now be calculated using a more efficient method as previously mentioned. As a result reduced 
length of integration and fewer modes in the inverse Fourier/Legendre series are needed in the 
computation of the first term in the spectral domain part of Eq. (23). The second term can be 
calculated in the spatial domain: 
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The selection of the most appropriate method for the calculation of the second term depends on 
the type of the actual problem. In our case we have a ring type spherical FSS mounted on a thin 
dielectric sheet that corresponds to a structure comprised out of three layers - air (free space), 
dielectric sheet and air again. In order to simplify the problem we can replace these three layers 
with a single layer, or in other words with a homogeneous space surrounding the FSS elements. 
Green’s function describing this problem is basically a free-space Green’s function that can be 
defined as 
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where JE

r
 is the electric field at a distance R from an electric source J

r
 in free space [16]. It is 

reasonable to assume that the major contribution to the mutual coupling between the individual 
FSS elements can be described with the coupling in such simplified homogeneous medium. That 
is why the free space Green’s function is selected for the calculation of the asymptotic part in the 
equation (24). Contribution of the dielectric sheet is of course still present, but hidden in the 
spectral domain part of the eq. (24). 
 
There are two questions still to be answered: which value to select for effective permittivity of 
the homogeneous media in the asymptotic problem, and how many modes are needed in spectral 
representation of the EM fields (with extracted asymptotic parts). Let us first discuss the needed 
number of modes.  
 
The form of equation (24) that is really coded is 
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As an example we have considered an array of circular rings of average radius 2.0 mm (i.e. to 
the center of the conductor; the conductor width was 0.4 mm), and separation between ring 
centers 4.9 mm. The rings are printed on a dielectric substrate of thickness 0.0075 mm and 
permittivity εr = 2.33. The rings follow the hexagonal grid. The size of the dielectric shell is rring 
= 37.4 mm and the array with 3 circles of antenna elements is considered. This curved FSS will 
be analyzed in details in the next section.  
 
The maximum number of modes Nmax is related to the size of the structure. In Figure 3.7 this 
number ranges from 2.5⋅ k0⋅ rring to 10.0⋅ k0⋅ rring, respectively (k0 is the free-space wave number; 
the effective permittivity used in calculations is εeff = 1.2.). It can be seen that even 3.0⋅ k0⋅ rring 
gives very good results. In order to be on the safe side, the number used in the hybrid program is 
4.0⋅ k0⋅ rring. 
 
The dependency on the selection of the effective permittivity is given in Figure 3.8. It can be 
seen that this choice is not critical, i.e. the good results are obtained in a wide interval of possible 
values (the good results are obtained for εeff  = 1.1 – 1.8). In order to give some general rule (i.e. 
the rule that would not depend on particular multilayer dielectric structure) we have plotted the 
transmission coefficient for the case when the FSS elements (rings in the considered case) are 
printed on a dielectric structure and for the case when the FSS elements are positioned in the 
free-space (Fig. 3.6). By comparing the resonant frequencies for these two cases (i.e. by 
comparing the frequencies for which the transmission coefficient reaches the minimum) we can 
conclude that 15.1≈effε . In all further calculations we have used 2.1=effε . 

 
 
Figure 3.6. Comparison of transmission coefficient for the case when the FSS elements (rings in 
the considered case) are printed on a dielectric structure and for the case when the FSS elements 
are positioned in the free-space. 
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       (a)       (b) 

 
   (c)         (d) 

 
(e)         (f) 

 
Figure 3.7. Accuracy of the hybrid model – dependence on the number of modes  Nmax; (a)    
Nmax = 2.5⋅ k0⋅ rring , (b)  Nmax = 3.0⋅ k0⋅ rring ,  (c) Nmax = 4.0⋅ k0⋅ rring , (d) Nmax = 5.0⋅ k0⋅ rring , (e) 
Nmax = 6.0⋅ k0⋅ rring , (f) Nmax = 10.0⋅ k0⋅ rring . 
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       (a)       (b) 

 
   (c)         (d) 

 
(e)          (f) 

 
Figure 3.8. Accuracy of the hybrid model – dependence on selection of effective permittivity; (a)    
εeff  = 1.0, (b)  εeff  = 1.1,  (c) εeff  = 1.2 , (d) εeff  = 1.3 , (e) εeff  = 1.5 , (f) εeff  = 1.8. 
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3.1.6 Subarray approach of analyzing curved FSS 
 
Most of the curved FSS are not completely spherical structures. Therefore, it is important to 
develop an analysis method for curved FSS with general curvature. The main suggested principle 
is to divide the original array into a set of subarrays, where each subarray is locally 
approximated with spherical FSS (or cylindrical FSS if more appropriate, see Fig.3.9).   
 
 
 

 
 
Figure 3.9. A doubly curved frequency selective radome with circular ring elements. Locally, 
the curved FSS can be approximated as a spherical FSS.  
 
 
There are two principles of connecting the subproblems (i.e. the results of the subarray analysis) 
into a global solution. In both cases the inner elements of the subarray are surrounded with 
outside elements whose current distribution is determined in another subarray problem. By this 
we distinguish the currents in the inner part of the array, and the currents at the edge elements of 
each considered subarray. In other words, overlapping elements exist between neighboring 
subarrays.  
 
Two approaches of connecting subarrays are:  
 

1. The current distribution of the elements in the subarray is individually determined, and 
therefore a large-scale problem is divided into subproblems of smaller size. In other 
words, instead of solving a large MoM matrix equation, one needs to solve a set of small-
size MoM matrix equations. 

2. The coupling MoM matrices of all subarray problems are connected into a global MoM 
matrix. In this approach, one needs to solve one large MoM linear system of equations. 
The MoM matrix is sparse since large-distance couplings are not taken into account due 
to subarray approach. Although this approach is more time consuming, it will be seen 
that it gives more accurate results since all couplings are globally connected (although 
large-distance couplings are not considered in this approach – they are approximated 
with zero value).    

⇒
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3.1.7 Calculation of radiation pattern of a FSS reflector system 
 
There are two main applications of curved FSS – to use it as a subreflector in a reflector system, 
or to use it as a frequency selective radome. In both cases we are interested in the radiation 
pattern of a whole radiation system. 
 
Let us consider first the reflector system. As an example, a single FSS reflector system is 
considered. The shape of the considered reflector is parabolic (although other shapes can be 
analyzed in the same way), and e.g. a horn antenna, placed in the focus of reflector, is selected as 
a primary feed. A sketch of the structure is given in Fig. 3.10. 
 

 
 
Figure 3.10. Reflector system consisting of a parabolic FSS reflector and a feeding antenna 
placed in the focus of reflector.  
 
 
The radiation pattern of the horn antenna (or some other similar feeding antenna) with a linear 
polarization can be approximated as: 
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The expression is written in local spherical coordinate system with the origin at the position of 
the phase center. It is important to explicitly put the dependence on distance R’ in the expression 
for radiation pattern since the distance of some point at the reflector to the focus point (where the 
phase center of the horn antenna is positioned) varies a lot for different points at the reflector 
surface. In other words, this dependence on distance will make a natural tapering of the radiation 
pattern of the primary feed.  
 
In order to find an optimum between tapering efficiency and spillover efficiency, it can be shown 
that the tapering of the radiation pattern at the edges of the reflector should be approximately –
10 dB lower compared to the apex value [17]. In more details, the field in the parabolic reflector 
aperture can be written as: 
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where the ),( φθ ′′feedF is the normalized radiation pattern of the feed antenna, rf is the distance 
between the focal point and the point at the reflector where the considered ray is reflected, and 
û is the unit vector describing the polarization of the feed antenna. Therefore, the factors α1 and 
α2 will be determined according to the requirement that the radiation pattern at the edges of the 
reflector should be approximately –10 dB lower compared to the apex value. 
 
Small parabolic reflectors can be approximated with a spherical reflector. In that case the 
curvature of the equivalent spherical reflector is equal to twice the focal distance (i.e. rring = 
2⋅freflector). The equation (27) in the global coordinate system (in which the origin corresponds to 
the center of the sphere) is equal (see Fig 3.11): 
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The voltage vector is calculated in the spectral domain:  
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The E-field radiated by the primary feed in the spectral domain is calculated as (δ represents the 
Kronecker symbol): 
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In most practical cases the FSS elements (rings in our case) are not just standing in free-space 
without any supporting structure. In practice they are usually printed on thin dielectric slab. In 
order take into account this thin slab, we have determined the transmission coefficient in the 
spectral domain (since the voltage vector is calculated in the spectral domain). In more details, 
for each incoming spherical harmonic the outgoing spherical harmonic is calculated and the ratio 
between amplitudes of these two harmonics corresponds to the spectral transmission coefficient. 
The spherical harmonic representation is derived with the wave potential approach. The radial 
component of the magnetic vector potential in the spectral domain is equal: 
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Here the part containing the Schelkunoff spherical Hankel functions of the second type 
represents the outgoing waves, and the part containing the Schelkunoff spherical Hankel 
functions of the first type represents the incoming waves. The four constants C1, C2, C3 and C4 
are determined by fulfilling the boundary conditions. In this case these boundary conditions are 
that the spectral-domain θ-component of the electric field and the spectral-domain φ-component 
of the magnetic field are continuous at two boundaries (defined with radii R1 and R2). In order to 
calculate the amplitude of the outgoing spherical harmonic we need to solve the following 
system of linear equations (the continuity condition for φθ HE ~ and ~  at the boundaries R1 and R2, 
respectively): 
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The transmission coefficient for the spherical harmonic containing θ-component of the electric 
field is defined as 
 

4~ CTE =
θ

       (34) 

 
In analog way we can determine the transmission coefficient for the spherical harmonic 
containing φ-component of the electric field. In order to obtain the system of linear equations 
(defined by the continuity condition for φθ EH ~ and ~  at the boundaries R1 and R2, respectively) 
we can use the duality principle – we can easily obtain the needed 4 equations by the substitution 
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It is interesting to notice that the amplitude of transmission coefficient is drastically reduced 
(actually approaching zero) for higher-order spherical harmonics. The approximate number of 
mode for which the transmission coefficient is very small (less than 10-5) is equal 

[ ]ringr Rk ε0int  (less than 10-12 for spherical harmonics larger than [ ] 10int 0 +ringr Rk ε ) ; which 
is connected with the division of spherical harmonics to radiated and non-radiated harmonics. 
This approximate expression is the same as the one given in [18] where this division to radiated 
and non-radiated harmonics is investigated. To be on safe side, we can conclude that all radiated 
harmonics are included in the first [ ] 10int 0 +ringr Rk ε  spherical harmonics. 
 
 

 
 
Figure 3.11. Connection between global and local coordinate system for a reflector system 
consisting of a spherical FSS reflector and a feeding antenna placed in the focus of reflector.  
 
 
 
3.1.8 The analysis of dual structure – slots in the curved PEC surface  
 
Similar procedure can be derived for the dual case scenario when the observed structure is a 
concave metal sheet with annular slots covered with dielectric layers. The analysis in this case 
has to be split into two parts, inner and outer problems, as shown in Fig. 3.12.  
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Figure 3.12. Sketch of the dual problem – curved FSS consisting of annular slots placed in the 
multilayer curved structure.  
 
 
Using the equivalence theorem the two parts of the problem can be connected. The mutual 
admittance term in this case is: 
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Again as in the ring type FSS case we can apply the asymptotic extraction, which results in; 
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and similarly as before the extracted part can be evaluated in the spatial domain; 
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Considering the nature of the problem the free space Green’s function is not a proper choice for 
the calculation of the extracted part. However, smooth canonical metallic structures can be very 
efficiently analyzed using Uniform Theory of Diffraction (UTD). The outer part is a typical 
UTD problem; apertures on a smooth PEC surface, and can be relatively easy implemented. The 
UTD formulation used for the computation of the outer asymptotic Green’s function 

)|,,(, pbptasymOUT rrφθG  is a generalized formulation for arbitrary convex structures given by 
Pathak et al. [19] : 
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Here ξ is a generalized Fock parameter, U(ξ) and V(ξ) are the corresponding soft and hard 
surface Fock integrals, D is the ray divergence factor and Q and Q’ are coordinates of the source 
and observation points which have distance t (see [19] for details).  
 
However, UTD can’t be used straight away due to the existence of the dielectric cover on the 
PEC, so again there is a need to define some effective permittivity value which is to be used in 
the UTD calculation. It can be shown that the best choice is to use the value of the permittivity 
of the layer that is next to the PEC (see [20] for details), and in our case this simply means that 
the actual value of the permittivity of the dielectric cover should be used for the calculation of 
the asymptotic outer problem. 
 
A bit more complex is the inner problem. A simple geometrical optics approach would be the 
first choice for a concave problem, however the circular holes in the PEC act as sources at the 
inner surface and generate multiple reflected ray fields that have caustics that lie near the 
boundary. Geometrical optics in such case is insufficient to give an accurate description of the 
surface fields and some additional methods have to be considered. Approach often used is the 
implementation of the whispering gallery modes into the analysis. Our inner problem can now be 
solved using a field solution that is comprised out of N geometrical optics rays and M 
whispering gallery modes [21]: 
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Gn here comes from the geometrical optics representation and is given by: 
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where a is the sphere radius and qn(w) is defined as 
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The second contribution is from the whispering gallery modes and it is defined as 
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Details of this calculation are given in [21]. 
 
 
 
 
 
3.1.9 Structure of the program  
 
If one considers the expressions needed to be calculated when implementing the spectral-domain 
moment method (equation (4)), one can notice that several parts depend only on geometry, i.e. 
they do not depend on frequency. For example, the vector-Legendre transforms of basis and test 
functions depend only on angular dimensions. Furthermore, if one considers the expressions that 
are used inside the G1DMULT algorithm, it can be seen that all expressions depend only on the 
spectral variable n, i.e. they do not depend on the spectral variable m (the φ dependence is 
included in the matrix L , see eqs. (1a)-(1d)). Therefore, the needed computer time can be 
drastically reduced if one precalculates parts that do not depend on frequency. More precisely, 
the vector-Legendre transforms of basis and test functions and the needed Legendre functions 
are calculated only once at the beginning of the program, whereas the spectral-domain Green’s 
functions are calculated only once per each frequency point outside the loop over m. The flow 
chart of the developed program is given in Figure.3.13. 
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Figure 3.13. The flow chart of the program cFSS. 
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4    PROJECT OUTCOMES -  RESULTS 
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4.1 Numerical results 
 
 
4.1.1 Scattering properties of curved FSS 
 
There are two types of considerations for curved FSS – when the excitation is an incident plane 
wave approaching the structure from the outside, and when the excitation is an antenna inside 
the radome. In this report first we will consider only the reflection and transmission properties of 
curved FSS when the excitation is a plane wave defined with 
  

jkzinc ezyx 0ˆ),,( ExE =       (44) 
 
As an example we have considered an array of circular rings of average radius 2.0 mm (i.e. to 
the center of the conductor; the conductor width was 0.4 mm), and separation between rings 
centers 4.9 mm. The rings are printed on a dielectric substrate of thickness 0.0075 mm and 
permittivity εr = 2.33. The rings follow the triangular grid. The measured resonant frequency of 
the planar array is around 23 Ghz [5]; see Fig. 4.2 (the dependence of the transmission 
coefficient on angle of incidence is given in Fig. 4.3). In spherical case, the two types of grids 
are considered: hexagonal grid and icosahedron grid (see Fig. 4.1).  
 
First, we have analyzed a spherical array with the radius of curvature 18.7 mm, i.e. the θ -
coordinates of rings are 0, 15, 30, 45 and 60 degrees (we have considered arrays up to 61 
elements with the hexagonal grid and up to 51 elements with the icosahedral grid, as shown in 
Fig. 4.1). Such a relatively small radius of curvature (around 1.6 0λ  at the central wavelength) is 
selected to emphasize the difference between planar and conformal periodic structures. 
  

        
    
         (a)        (b) 

Figure 4.1. Geometry of the spherical FSS; (a) hexagonal structure, (b) icosahedral structure 
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(a) 

 
(b) 

 
Figure 4.2. Measured results of the transmission coefficient for the planar case – normal 
incidence  (from [5]);  (a) E plane, (b) H plane. 
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(a) 

 

 
(b) 

Figure 4.3. The dependency of the transmission coefficient on angle of incidence. The measured 
results of the planar FSS are shown (from [5]); (a) E plane, (b) H plane. 
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First we have calculated the influence of varying relative angle of incidence (defined as an angle 
with the surface normal vector), i.e. the input plane wave approaches the rings from a different 
angle of incidence, depending on the ring’s position in the curved structure. For that purpose we 
have developed two versions of the program – one that rigorously includes the mutual coupling 
effect, and one where the mutual coupling is ignored (i.e. the moment method matrix has only 
self-coupling terms located around the matrix diagonal). In Fig. 4.4 we have shown how the 
induced current amplitude varies with the relative angle of incidence of the plane wave 
excitation (the considered rings have φ-coordinate φ ring = 0°). It can be seen that the resonant 
frequency of the isolated ring stays almost constant (one of the reasons why the circular rings are 
selected for building curved FSS), and that only the amplitude changes due to the change of the 
angle of incidence (described with the factor cosθinc, see Fig. 4.4.a). The mutual coupling is not 
considered in Fig. 4.4.a. Once we take the mutual coupling into account the situation is quite 
different, as shown in Fig. 4.4.b and 4.4.c. Therefore, it is important to rigorously take into 
account mutual coupling effects.  
 

 
(a) 
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(b) 

 
(c) 

 
Figure 4.4. Variation of the current amplitude as a function of ring position (the φ-coordinate of 
the considered rings is  φ ring = 0°); (a) mutual coupling is not considered, (b) mutual coupling is 
rigorously considered; hexagonal structure, (c) mutual coupling is rigorously considered; 
icosahedronal structure. The radius of the FSS structure is 18.7 mm, the FSS consists of 4 circles 
of elements around the central ring element. 
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Next, we have considered the variation of the forward scattered field as a function of the FSS 
size (Fig. 4.5.), i.e. as a function of the number of circles of ring elements around the central ring 
(placed at the pole) that define the spherical hexagonal or icosahedronal structure (see Fig.4.1.; 
in each hexagonal/icosahedronal circle the elements have the same θ-coordinate). The forward 
scattered field is a measure of a shadow that is produced by FSS, i.e. it corresponds to the T - 1 
of the equivalent planar FSS, where T is the transmission coefficient. As in the previous case, we 
have considered two cases depending on whether or not the mutual coupling effects are 
considered. When the mutual coupling is taken into account the forward scattered field is not so 
regular anymore, and it has more than one local maximum. 

 

 

 
(a) 
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(b) 

 
(c) 

Figure 4.5. Variation of the forward scattered field with the size of the array (number of circles 
of elements around the central element) in the spherical FSS structure (1 circle of elements 
correspond to the array of 7 elements, two circles of elements correspond to the array of 19 
elements, etc.); (a) mutual coupling is not considered, (b) mutual coupling is rigorously 
considered; hexagonal structure, (c) mutual coupling is rigorously considered; icosahedronal 
structure.  
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(a) 

 
(b) 

Figure 4.6. Transmission coefficient of the spherical FSS; (a) hexagonal structure, (b) 
icosahedronal structure. The angular distance between circles of elements in the considered FSS 
is 15°;  the angle of the cone with elements varies from the 15 deg (1 circle of elements around 
the central ring element) to 60 deg (4 circles of elements around the central ring element). 
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The transmission coefficient T for the curved FSS is defined as the ratio of the magnitude of the 
total E-field (incident and scattered) to the magnitude of the E-field due to the aperture field 
alone (i.e. in the absence of the array) apertureaperturescattT EEE +=  [14]. The incident field 

apertureE  in the upper expression is calculated as the far field at a distance z in the axial direction 
radiated by a circular aperture uniformly illuminated with a field of unit amplitude. In the case of 
the curved FSS printed on a dielectric, the influence of the dielectric slab is included in Eaperture. 
 
The transmission coefficient of the curved FSS from the previous example, following the 
hexagonal or the icosahedral grid, is shown in Fig. 4.6 (the angular distance between circles of 
elements is 15°). As in the previous example we have considered the dependency of the 
transmission coefficient on the FSS size – the angle of the cone with elements varies from 15°   
(1 circle of elements around the central ring element) to 60° (4 circles of elements around the 
central ring element). 
 
It can be seen that the transmission coefficient for the curved FSS is quite non-regular (at least 
for small radii of curvature). Almost all the curves have two minimums. The question is can we 
approximate the analysis of curved FSS with the local planar approximation. In order to verify 
the local planar approach (i.e. the analysis approach where the currents at the FSS elements are 
determined by considering locally infinite planar array with average distance between elements) 
we have compared the results obtained with the rigorous method (without approximation on 
mutual coupling calculation) and with the local planar approach, see Fig. 4.7. It can be seen that 
it is not possible to use the local planar approximation, at least for curved FSS with small radius 
of curvature. The accuracy of the local planar approximation will be discussed in details later on.  
 

 
 
Figure 4.7. Transmission coefficient of the spherical FSS (hexagonal grid; 4 circles of elements 
around the central ring element) – comparison of the rigorous analysis approach and the analysis 
approach based on the local planar approximation. 
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The main reason why the transmission coefficient is so different compared to the transmission 
coefficient of the equivalent planar structure (Fig. 4.3) is that it is impossible to ensure the same 
distance between elements when considering double-curved periodic structure. For the 
considered spherical case (hexagonal or icosahedronal grid) the minimum and maximum 
distances d between the neighboring elements can be easily computed using the cosine law for 
spherical triangles [22]:  
 

( )211111 cossinsincoscoscos φφθθθθ −+=d .     (45) 
 

Table 1 gives the minimum and maximum distances d between the neighboring elements for ring 
elements belonging to different rows of the considered spherical FSS. 

 

Circle number normalized dmin normalized dmax 

  0 1.0 1.0 

  1 0.99 1.23 

  2 0.99 1.28 

  3 0.94 1.45 

  4 0.87 1.45 

(a) 

 

Circle number normalized dmin normalized dmax 

  0 1.0 1.0 

  1 1.0 1.32 

  2 1.0 1.38 

  3 1.0 1.38 

  4 1.0 1.37 

(b) 
Table 1. The minimum and maximum distances d between the neighboring elements for ring 
elements belonging to different circles of elements of the considered spherical FSS; (a) 
hexagonal structure, (b) icosahedronal structure. The radius of the structure is 18.7 mm, i.e. the 
angular distance between the circles of elements of the hexagonal/ icosahedronal structure is 15°. 

 

The influence of the element spacing on the resonant frequency is illustrated in Fig. 4.8 where 
the transmission coefficient of the equivalent planar FSS is plotted (planar FSS with triangular 
grid; FSS dimensions are the same as before). It can be seen that the resonant frequency is 
increased when the distance between the ring elements is enlarged. This explains why we have 
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two peaks in the transmission coefficient – different element distances cause different resonant 
frequencies.  

 

 
 
Figure 4.8. Transmission coefficient of the planar FSS as a function of the distance drings 
between the ring elements.  

 

With enlarging the structure radius the angular distance between rows of elements is reduced. In 
other words, the angular distance between rows of elements of  7.5°, 5.0° and 3.75° corresponds 
to structure radius rring of  37.4 mm, 56.1 mm and 74.8 mm, respectively (the structure geometry 
is given in Fig. 3.1). The array “approaches” the planar case in which there is no variation in 
element spacing. That is illustrated in Table 2 where the FSS with four time larger radius is 
considered. Table 2 gives the minimum and maximum distances d between the neighboring 
elements for ring elements belonging to different rows of the spherical FSS with rring = 74.8 mm. 

 

Circle number normalized dmin normalized dmax 

  0 1.0 1.0 

  1 1.0 1.24 

  2 1.0 1.31 

  3 1.0 1.34 

  4 1.0 1.36 

(a) 
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Circle number normalized dmin normalized dmax 

  0 1.0 1.0 

  1 1.0 1.33 

  2 1.0 1.42 

  3 1.0 1.42 

  4 1.0 1.30 

(b) 
Table 2. The minimum and maximum distances d between the neighboring elements for ring 
elements belonging to different circles of elements of the considered spherical FSS; (a) 
hexagonal structure, (b) icosahedronal structure. The radius of the structure is 74.8 mm, i.e. the 
angular distance between the circles of elements of the hexagonal/ icosahedronal structure is 
3.75°. 

 

It is interesting to notice that the distances between FSS elements are more uniform only in the 
case of hexagonal grid, i.e. in the case of icosahedron grid the situation is even worse. The 
reason for that is that in the case of hexagonal grid we have started with the planar case and we 
have adapted the grid for spherical case. In the case of icosahedron grid we have started with a 
small sphere and we have adapted the grid for spheres with large radii. 

 

The current distribution, the forward scattered field and the transmission coefficient for the 
spherical FSS with both hexagonal and icosahedron grid with rring = 74.8 mm is shown in Figs. 
4.9 - 4.11. It can be seen that although the current distribution is still quite non-regular the 
scattered field and the transmission coefficient start to “behave” like in the planar case. In other 
words, due to “planar behavior of the structure”, there is only one minimum in the transmission 
coefficient curve, and the resonant frequency does not depend on the size of the FSS. 
Furthermore, since the distance between FSS elements is larger for icosahedron grid (see Table 
2) the resonant frequency is higher for the FSS with icosahedron grid (see Fig. 4.8; the resonant 
frequency of the curved FSS with hexagonal/icosahedron grid is 25.4 GHz and 26.2 GHz, 
respectively).  
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(a) 

 
(b) 

Figure 4.9. Variation of the current amplitude as a function of ring position (the φ-coordinate of 
the considered rings is  φ ring = 0°);  (a) hexagonal structure, (b) icosahedronal structure. The 
radius of the FSS structure is 74.8 mm, the FSS consists of 4 circles of elements around the 
central ring element. 
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(a) 

 
(b) 

Figure 4.10. Forward scattered field of the spherical FSS as a function of the FSS size, i.e. as a 
function of the number of circles of ring elements around the central ring; (a) hexagonal 
structure, (b) icosahedronal structure. The angular distance between circles of elements in the 
considered FSS is 3.75° (rring = 74.8 mm). 



 Analysis of curved frequency selective surfaces 48

 
(a)  

 
(b) 

 
Figure 4.11. Transmission coefficient of the spherical FSS as a function of the FSS size, i.e. as a 
function of the number of circles of ring elements around the central ring; (a) hexagonal 
structure, (b) icosahedronal structure. The angular distance between circles of elements in the 
considered FSS is 3.75° (rring = 74.8 mm).  
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It is interesting to notice that the minimum/maximum distance mostly depends on the angular 
position of the FSS elements. In Table 3 the minimum/maximum distance is considered for the 
spherical FSS with radius rring = 74.8 mm. The considered elements have the same angular 
position (θ - coordinate) as the elements of the FSS with the 4 times smaller radius (i.e. as the 
elements considered in table 1). By comparing the tables 1 and 3 we can conclude that for the 
FSS with hexagonal grid the minimum/maximum distance depends mostly on angular position, 
while for the FSS with icosahedron grid the minimum/maximum distance depends also on size 
of the structure (still the dominant factor is the angular position of the FSS elements).  

 

Circle number normalized dmin normalized dmax 

  0 1.0 1.0 

  4 1.0 1.36 

  8 1.0 1.37 

  12 0.94 1.45 

  16 0.87 1.43 

(a) 

 

Circle number normalized dmin normalized dmax 

  0 1.0 1.0 

  4 1.0 1.30 

  8 1.0 1.40 

  12 1.0 1.41 

  16 1.0 1.43 

(b) 

Table 3. The minimum and maximum distances d between the neighboring elements for ring 
elements belonging to different circles of elements of the considered spherical FSS; (a) 
hexagonal structure, (b) icosahedronal structure. The radius of the structure is 74.8 mm, i.e. the 
angular distance between the circles of elements of the hexagonal/ icosahedronal structure is 
3.75°. 

 

One of the important practical questions is how to determine the radius of the FSS for which the 
structure starts to behave as an equivalent planar FSS. In order to answer this question we have 
compared the transmission coefficient of the finite planar FSS with spherical FSS of different 
radius (the finite FSS is obtained by ∞→ringr ). The permittivity of the dielectric supporting 
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structure is equal to 1.0 since our program for planar FSS can analyze only the finite FSS in 
homogeneous space. The curved FSS has hexagonal grid, and the structure radius is taken as 
parameter. The structure radius of 3.74 cm, 5.61 cm and 7.48 cm corresponds to the angular 
distance between circles of elements of 7.5°, 5.0°, and 3.75°, respectively. The dimensions of the 
rings are the same as before, and 6 circles of ring elements around the central element are 
present. As it can be seen in Fig. 4.12, with enlarging the structure radius the transmission 
coefficient (and the forward scattered field) approaches the transmission coefficient (forward 
scattered field) of the planar case. Furthermore, for structures lager than rring = 56.1 mm (4.7 λ0 
at the central frequency) there is practically no difference between planar and curved results 
(only a slight shift of the resonant frequency is present). Therefore, we can conclude that for 
structures with radius of curvature larger than ∼5λ0 one can use the local planar approximation. 

 
(a) 

 
(b) 

Figure 4.12. Dependency of the forward scattered field (a) and of the transmission coefficient (b) 
on the structure radius. The comparison with the results of the finite planar FSS is also given. 
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Another important practical question is can we use the local planar approximation when 
analyzing curved FSS. In other words, the current distribution at each FSS element is determined 
by considering the equivalent infinite planar FSS (i.e. planar FSS with the distance between 
elements that locally matches the curved FSS). In Fig. 4.13 the comparison of two analysis 
methods is given for the array with rring = 74.8 mm, εr = 2.33 and the array consist of 6 circles 
around the central ring element. It can be seen that the local planar approximation cannot 
describe curved FSS properly (the difference between calculated transmission coefficients is too 
large). The reason for that is illustrated in Fig. 4.13.b – the current distribution is “too simple”, 
i.e. the included mutual coupling effects that correspond to infinite planar FSS are too simple for 
the considered complex structure (curved FSS with non-uniform element distribution).   

 
(a) 

 
(b) 

Figure 4.13. Transmission coefficient (a) and current distribution (b) of spherical FSS with 
hexagonal grid (rring = 74.8 mm, 6 circles of elements around the central ring element are 
present). The results are obtained using the local planar approximation. The comparison with the 
transmission coefficient obtained using rigorous approach is also given. 
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4.1.2 Subarray approach of analyzing curved FSS 
 
The proposed analysis method of a large curved FSS is based on subdividing the FSS into a set 
of subarrays, each with different local radius of curvature. In this way each subarray can be 
treated as a small spherical or cylindrical FSS. Therefore, by using the proposed approach, it is 
possible to analyze general curved FSS mounted on multilayer dielectric supporting structure.  
 
There are two principles of connecting the results of each subproblem into the global solution: 
 

1. The current distribution of the FSS elements in each subarray is individually determined. 
In this way a set of small MoM problems are solved instead of solving a large-scale 
MoM problem. The current distribution of the whole array is simply determined by 
mapping the each FSS element to the corresponding subarray problem, i.e. the current 
distribution at each FSS element is the same as the one determined by the corresponding 
subarray problem. The largest advantage of this approach is that we do not need to solve 
a huge linear system (usually with much more than 1000 unknowns). 

2. Each FSS element is associated with the corresponding subarray problem. Furthermore, 
all these subproblems are connected into a global problem. In this approach we have to 
solve the huge linear system (corresponding to the superposition of all subproblems). 
However, we need to calculate mutual coupling terms only for the neighboring elements 
(therefore, saving a lot of CPU time). 

 
Both approaches are tested by analyzing the spherical FSS with hexagonal grid containing 6 
circles of elements around the central element (the FSS has totally 127 ring elements). Two cases 
are considered – when the structure radius is rring = 37.4 mm and rring = 74.8 mm, i.e. the angular 
distance between circles of elements is 7.5° and 3.75°, respectively. Fig. 4.14 gives results of 
both approaches when each subarray contains 3 circles of elements around the central FSS 
element. In the first approach, the inner part of each subarray consists of 7 elements (the inner 
parts directly determine the current distribution of the whole FSS; the edge effects are included 
in the outer part of each subarray). It can be seen that the first approach gives less accurate 
results. The reason for that probably lies in the nature of spherical FSS, i.e. in the complexity of 
mutual coupling effects present in curved FSS. In other words, it is not enough to locally 
consider mutual coupling effects (although strong coupling effects are present between nearby 
elements), but one must consider secondary coupling as well (ring a is coupled with ring b, ring 
b is coupled with ring c, ring c is coupled with ring d, etc.).     
 
In Fig 4.15 we have investigated how many elements we need to include in each subarray in 
order to accurately predict the electromagnetic properties of the total FSS (the parameters of the 
large spherical FSS are the same like in the previous example). Only the results obtained using 
the second approach are shown here. It can be seen that good results are obtained using three 
circles of elements around each considered FSS element. However, one can also notice that there 
is always some discrepancy between the subarray and the rigorous approach. That also indicates 
the complexity of the mutual coupling effects in the curved FSS in which it is not possible to 
fulfill periodical symmetry (i.e. there is always some variation in the distance between different 
neighboring elements). 
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(a) 

 
(b) 

 
Figure 4.14. Transmission coefficient of a spherical FSS following the hexagonal grid with 6 
circles of elements around the central element. (totally 127 elements are present). Transmission 
coefficient is calculated using the subarray approach where all the subproblems are connected 
into a global problem. (a) rring = 37.4 mm, (b) rring = 74.8 mm. 
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(a) 

 
(b) 

 
Figure 4.15. Transmission coefficient of a spherical FSS following the hexagonal grid with 6 
circles of elements around the central element. (totally 127 elements are present). Transmission 
coefficient is calculated using two versions of the subarray approach and using the rigorous 
approach. (a) rring = 37.4 mm, (b) rring = 74.8 mm. 
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4.1.3 Radiation pattern of the FSS reflector system and of the FSS radome 
 
In order to illustrate the possibility of using curved FSS for building frequency-selective 
reflector, we have considered a single FSS reflector system. The shape of the considered 
reflector is spherical, which is a good approximation of the parabolic reflector if the angular 
width is not too large. As a feed antenna we have considered a horn antenna placed in the focus 
of reflector (the distance between the apex of the reflector and the focal point is equal to half of 
the reflector radius,  freflector = rring / 2). Sketch of the structure is given in Fig. 4.16. 
 

 
 
Figure 4.16. Reflector system consisting of a spherical FSS reflector and a feeding antenna 
placed in the focus of reflector.  
 
 
The radiation pattern of the horn antenna (or some other similar feeding antenna) with a linear 
polarization can be approximated as: 
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The expression is written in local spherical coordinate system with the origin at the position of 
the phase center. It is important to explicitly put the dependence on distance r’ in the expression 
for radiation pattern since the distance of some point at the reflector to the focus point (where the 
phase center of the horn antenna is positioned) varies a lot for different points at the reflector 
surface. In other words, this dependence on distance will make a natural tapering of the radiation 
pattern of the primary feed [17].  
 
In order to find the optimum between tapering efficiency and spillover efficiency, it can be 
shown that the tapering of the radiation pattern at the edges of the reflector should be 
approximately –10 dB [17]. Therefore, the factors α1 and α2 will be determined according this 
requirement. 
 
We have considered 3 examples of simple reflector system. The parameters of each considered 
structure are given in Table 4: radius of reflector rring, number of circles of elements around the 
central ring element (placed at the apex), angular size of the reflector, and factors α1 and α2 of 
the feeding horn. The working frequency in all considered cases was 25.4 GHz (frequency for 
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which the transmission coefficient of the curved FSS with radius  rring = 74.8 mm has the 
minimum).    
 
 

 

Reflector 
number 

 
Reflector 
radius rring  

(mm)  

Number    
of circles    
of FSS 

elements 

Angular 
size of the 
array (from 
the origin) 

Angular size 
of the array 
(from the 

focal point) 

 

Factors     
α1 and α2 

  1 37.4 6 45° 73.7° 0.6017 

  2 74.8 6 22.5° 42.1° 3.4167 

  3 74.8 8 30° 53.8° 1.7793 

 
Table 4. The parameters of the considered reflector systems. 

 

The radiation pattern of the reflector system is given in Figure 4.17. It can be seen that with 
enlarging the size of the FSS (mostly determined with the number of circles of FSS elements 
around the central ring element placed at the apex) the beamwidth is getting narrower and, 
consequently, the directivity is getting larger.  

 

The frequency dependency of the radiation pattern is illustrated in Fig. 4.18. We have considered 
the first case, i.e. the radius of the structure is  rring = 37.4 mm and the curved FSS consisting out 
of 6 circles of elements around the central FSS element. It can be seen that with enlarging the 
working frequency the beamwidth is getting narrower. Furthermore, the FSS is not completely 
reflective at frequencies f  = 20 GHz and f = 30 GHz resulting in the loss of the directivity 
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(a) 

 
(b) 
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(c) 

 

Figure 4.17. Normalized radiation patterns of the reflector system described in Table 4. The 
working frequency is 25.4 GHz; (a) case 1, (b) case 2, (c) case 3. 

 
(a) 
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(b) 

Figure 4.18. Frequency dependence of the radiation pattern of the reflector system. The spherical  
FSS is described in Table 4 (case 1); (a) E-plane, (b) H-plane. 
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As an example of the dual case, an annular slot FSS radome, we have considered an array of 
annular slots of average radius 2.0 mm (i.e. to the center of the slot; the slot width was 0.4 mm), 
and separation between annular slot centers is 4.9 mm. The slots are printed in a spherical 
ground plane placed on a dielectric substrate of thickness 0.0075 mm and permittivity εr = 2.33. 
The annular slots follow the triangular grid. Inside the radome there is a horn with symmetric 
linearly polarized radiation pattern whose –10 dB beamwidth is 60°. The horn is placed in the 
origin of the coordinate system, i.e. the distance to all annular slots is the same.  
 
In Fig. 4.19 two cases are considered: a radome with radius rslot = 18.7 mm with 6 circles of slots 
around the central slot element placed at the apex (i.e. the hemispherical structure; the structure 
contains 109 slots), and a radome with radius rslot = 37.4 mm with 8 circles of slots around the 
central slot element placed at the apex (the conical angle of the area containing annular slots is 
60°; the structure contains 217 slots). 
 
Fig. 4.19 shows the comparison of the radiation patterns of the horn & radome structure (both in 
the E- and H-planes) and of the horn without the radome. The working frequency is f = 25 GHz. 
It can be seen that there is a large difference between the radiation patterns if the radome is 
included into the analysis. This difference is also strongly frequency depended; see Fig 4.20, 
where the radiation pattern of the horn & radome structure is given for different frequencies for 
the hemispherical slotted structure. These results indicate that the frequency selective radome 
requires a careful design if we want to obtain the radome that does not disturb the radiation 
pattern of the primary feed antenna.   
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(a) 

 
(b) 

 
Figure 4.19. The radiation pattern of the horn with a spherical FSS radome in both E- and H-
planes. For comparison the radiation pattern of the horn without radome is also given. The 
working frequency is f = 25 GHz. (a) rslot =  18.7 mm  (b) rslot =  37.4 mm. 
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(a) 

 
(b) 

Figure 4.20. The radiation pattern of the horn with a spherical FSS radome as a function of 
frequency. The radius of the structure is rslot =  18.7 mm. For comparison the radiation pattern of 
the horn without radome is also given. The working frequency is f = 25 GHz. (a) E-plane, (b) H-
plane. 
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4    CONCLUSIONS 
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   Conclusions 
 
 
 
 
 

During the 12 months assigned to this project the software for the analysis of curved frequency 
selective surfaces (curved FSS) was developed. Both single and double curved structures can be 
analyzed, and also there is a possibility to use patches or apertures as the FSS elements. The 
proposed building elements of the FSS are circular metallic rings due to their good polarization 
and resonant frequency properties, and by using this elements all the possibilities of this software 
were shown. Most importantly, the following characteristics can be obtained: (a) reflection 
(radar cross-section) from the curved structure, (b) transmission (radiation pattern) through the 
curved structure, and (c) losses due to the periodic structure. 

The basic idea of the proposed analysis model is to approximate the curved structure with 
overlapping subarrays - spherical periodic structures of an appropriate (local) radius of 
curvature. The influence of the overlapping subarray size and the number of overlapping 
elements on the FSS characteristics have been analyzed and it is shown that at least two circles 
of FSS elements around the central element are needed for good approximation of the current. 

The individual spherical subarrays are analyzed using the Method of Moments (MoM) in the 
spectral domain. This analysis has been accelerated using a new technique for calculating the 
mutual coupling in which two additional potential-like auxiliary functions are defined, 
containing the information about the coordinates only in respective arguments of the product of 
Legendre and exponential functions. Consequently, this term can be transformed from one 
coordinate system to another very simply, by use of the additional theorem for associated 
Legendre functions. The importance of rigorous analysis of mutual coupling effects is 
demonstrated on several examples. 

A significant acceleration of the algorithm is achieved using a newly developed hybrid method 
for the calculation of the MoM impedance/admittance matrix terms. The developed method 
combines the spectral domain approach with a free space method or Uniform Theory of 
Diffraction (UTD) in order to simplify and accelerate the calculation of the highly oscillating 
integrals, which need to be evaluated in the MoM analysis. Major benefit of this hybrid method 
is that it can be applied to very large multilayered structures (i.e. structures with large radii) and 
provide the results reasonably fast. 
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The realized outcomes of the project are: 
 

• Program “cFSS” that analyzes spherical frequency selective periodic structures 
consisting of circular ring elements. Circular rings as elements for building curved FSS 
were selected due to their good polarization and resonant frequency properties. The 
program calculates: 

 
o Current distribution at each ring in the subarray of the analyzed FSS without 

mutual coupling taken into account, 
o Current distribution at each ring in the subarray of the analyzed FSS with mutual 

coupling between the ring elements rigorously taken into account, 
o Scattered field of the analyzed subarray with and without mutual coupling taken 

into account, 
o Transmission coefficient of the analyzed subarray, 
o Electromagnetic properties of the whole curved FSS structure, obtained by 

calculating scattered electromagnetic field of the whole FSS (the needed current 
distribution is obtained by solving a set of subarray problems), 

o Radiation pattern of the FSS reflector system where the primary feed is 
characterized with the known far-field radiation pattern, 

o Radiation pattern of the FSS radome system where, as FSS elements, circular 
annular apertures are considered (so-called dual problem).  



 Analysis of curved frequency selective surfaces 66

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

5     Bibliography 
 
 
 
 
[1]  Josefsson, L., and Persson, P.: ‘Conformal Array Antenna Theory and Design’ (Wiley - 
IEEE Press, 2006). 
 
[2] Tomasic, B., Turtle, J., and Liu, S.: ‘A geodesic sphere phased array for satellite control and 
communication’, International Union of Radio Science, XXVIIth General Assembly, Maastricht, 
The Netherlands, August 2002.   
 
[3] Tomasic, B., Turtle, J., and Liu, S.: ‘Spherical arrays – design considerations’, Proceedings 
of 18th International Conference on Applied Electromagnetics and Communications, 
(ICECOM'05), Dubrovnik, Croatia, 2005, 487-493. 
 
[4] Rahmat-Samii, Y. and Tulinstef., F.: ‘Diffraction analysis of frequency selective surface 
antenna,’ IEEE Trans. on Antennas and Propagat., 1993, Vol. 41,  pp.  476-482. 
 
[5] Parker, E. A., and Hamdy, S. M. A., ‘Rings as elements for frequency selective surfaces,’ 
Electronics Letters, vol. 17, pp. 612-614, (1981). 
 
[6]  Harrington, R.F.: ‘Time-harmonic electromagnetic waves’ (McGraw Hill, New York, 1961). 
 
[7]  Sipus, Z., Kildal, P.-S., Leijon, R. and Johansson, M.: ‘An algorithm for calculating Green’s 
functions for planar, circular cylindrical and spherical multilayer substrates,’ Applied 
Computational Electromagnetics Society Journal, 1998, vol. 13,  pp. 243-254. 
 



 Analysis of curved frequency selective surfaces 67

[8] Tam, W.Y., and Luk, K.M.: ‘Resonances in spherical-circular microstrip structures of 
cylindrical-rectangular and wraparound microstrip antennas,’ IEEE Trans. Microwave Theory 
Tech.,  1991, Vol. 39,  pp. 700-704. 
 
[9]  Sipus, Z., Burum, N., Skokic, S., and Kildal, P.-S.: ‘Analysis of spherical arrays of 
microstrip antennas using moment method in spectral domain,’ IEE Proceedings - Microwaves, 
Antennas and Propagation,  2006, Vol. 153, pp. 533-543.  
 
[10]  Tam, W.Y., and Luk, K.M.: ‘Far field analysis of spherical-circular microstrip antennas by 
electric surface current models,’ IEE Proceedings - Microwaves, Antennas and Propagation,  
1991, Vol. 138, pp. 98-102.  
 
[11]  Sengupta, D. L., Smith, T. M., and Larson, R. W.: ‘Radiation Characteristics of Spherical 
Array of Circularly Polarized Elements,’ IEEE Trans. on Antennas and Propagat., 1968, Vol. 
16, pp.   2-7. 
 
[12]  Vilenkin, N. Ja.: ‘Special Functions and the Theory of Group Representation,’ (American 
Mathematical Society, Providence, 1968). 
 
[13] Sipus, Z., and Skokic, S.: ‘Application of Vilenkin's additional theorem in the analysis of 
spherical antennas and periodic structures,’ Proceedings of the 1st European Conference on 
Antennas and Propqagation, Nice, France, 2006, paper 363810zs in CD.  
 
[14] Savia, S.B., Parker, E. A., and Philips, B.: ‘Finite planar- and curved-ring-element 
frequency-selective surfaces,’ IEE Proceedings - Microwaves, Antennas and Propagation, 1999, 
Vol. 146, pp. 401-406.  
 
[15] Pozar, D.M.: ‘Improved computational efficiency for the moment method solution of 
printed dipoles and patches,’ Electromagnetics, 1984, Vol. 3, No. 3&4, pp. 299-309.  
 
[16] Kildal, P.-S.: ‘Foundations of Antennas - A Unified Approach,’ Studentlitteratur AB, 2000. 
 
[17] Stutzman, W.L., Thiele, G.A.: Antenna Theory and Design, Wiley, 1998. 
 
[18] Hansen, J,E, (editor): Spherical near-field antenna measurements, Peregrinus Ltd., 1988.  
 
[19] Pathak, P.H., Wang, N.: ‘Ray analysis of Mutual Coupling Between Antennas on a Convex 
Surface,’ IEEE Trans. Antennas Propagation, 1981, Vol. AP-29, No. 6, pp. 911-922. 
 
[20] Bosiljevac, M., Persson, P., Sipus, Z.: ‘Hybrid spectral domain - UTD method applied to 
conformal antenna analysis,’ Proceedings of the European Conference on Antennas and 
Propagation EuCap 2006, Nice, 2006. 
 
[21] Ishihara, T.,  Felsen, L.B., Green, A.: ‘High-Frequency Fields Excited by a Line Source 
Located on a Perfectly Conducting Concave Cylindrical Surface’, IEEE Trans. Antennas 
Propagation, 1978., Vol. AP-26, No. 6, pp.757-767.  
 
[22] Abramowitz, M., and Stegun, I.: ‘Handbook of mathematical functions’ Dover, 1965. 
 



 Analysis of curved frequency selective surfaces 68

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

6   APPENDIX 
 
 
 

 



 Analysis of curved frequency selective surfaces 69

 

 

 
 

6.1  cFSS program - text file interface 
 
 
 
The programs cFSS and cFSSpat, developed for the analysis of spherical frequency selective 
surfaces (FSS), interact with the user and with each other using ASCII text files. This scheme, 
with all files in question is presented in Fig. 6.1.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.1. Input and output files for the programs cFSS and cFSSpat. 

 
 

 

 
INPUT DATA 

cFSS.in 

   CFSSpat 

cFSSpat.out 
 

INPUT DATA 

pataz.dat 

patel0.dat, patel90.dat

 

RADIATION PATTERN 
IN AZIMUTHAL PLANE 

 

RADIATION PATTERN 
IN ELEVATION PLANE 

   cFSS 

 

CURRENT 
DISTRIBUTON 
ON PATCHES 

tempamp.t

 

FOR TROUBLESHOOTING 
AND EVALUATION ONLY

temp.t

cFSS.out
 

OUTPUT DATA 
scat.dat

 

FORWARD SCATTERED 
FIELD & TRANSMISSION 

COEFFICIENT 



 Analysis of curved frequency selective surfaces 70

 

6.1.1  The cFSS.in file 
 
The name of the input file for both cFSS and cFSSpat programs is cFSS.in. Each line possesses 
the value of several variables and short description of these variables. Since our intention was to 
make a compatible program with previously developed programs cFSS/cFSSpat we have decided 
to use the input/output files with the same names and structures. The parts of the input/output 
files that have different meaning are written in bold letters. The input variables, which must have 
values when the call of the cFSS and cFSSpat is made, are: 
 
First line: 
 
Fmin, Fmax, Nfrequency,Modecal  REAL, REAL, INTEGER, CHARACTER 

Fmin and Fmax are the minimum and maximum frequency (in 
GHz). Nfrequency is the number of frequency points for which the 
array is analyzed. These values are used only when the call of the 
SMiSPA program is made. cFSSpat program calculates the 
radiation pattern only for one frequency, and that frequency is 
Fmin.  If we first calculate the patch currents at Nfrequency 
frequency points (by calling cFSS program), then we can choose 
the frequency point for which we want to calculate the radiation 
pattern by choosing Fmin. The only condition is that the patch 
currents are calculated for the chosen frequency point.  
 

Second line: 
Rin     REAL 

Rin is the inner radius of the structure (in cm).  
 
Third line: 
Nlayer  INTEGER 
    Nlayer is the number of dielectric layers. 
 
Next Nlayer lines: 
h, EpsilonR, Tdelta  REAL  

Each line contains three parameters: h, EpsilonR and Tdelta that 
describe the thickness, the relative permittivity and loss tangent of 
each dielectric layer, respectively. 

 
Next line: 
Npatlayer   INTEGER 

Npatlayer is the numbers of the dielectric layer at top of which the 
patches (elements of the FSS structure) are placed. In other words, 
the patches are placed between dielectric layers Npatlayer and 
Npatlayer+1. If the patches are placed in the middle of some 
dielectric layer, an additional dielectric layer should be introduced, 
i.e. the considered dielectric layer should be split into two parts 
and the patches should be placed at the interface between these 
two dielectric layers. 
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Next line: 
Npat1, Npat2, Lattice  INTEGER, CHARACTER 

Lattice represents the type of the grid lattice – H means hexagonal 
lattice, I means icosahedron lattice, R means rectangular lattice, 
and F means that the position of each patch is read at the end of 
the input file. For hexagonal and icosahedron lattice Npat1 is the 
number of circles of elements in the array, and Npat2 denotes the 
ratio between the sides of equilateral triangles of the 
hexagonal/icosahedron structure and of the considered array (for 
example, Npat1=3 and Npat2=4 means that angle between circles 
of FSS elements is 60/4 = 15°, and that we have 1 + 6 + 12 = 19 
elements in the array). For rectangular lattice Npat1 and Npat2 are 
the number of patches in the θ- and φ-directions, respectively. If 
the patch position is read from the file, then Npat1 and Npat2 have 
no meaning and therefore they can have arbitrary values. 

 
 
Next line: 
Dpat1, Dpat2   REAL 

Dpat1 and Dpat2 denote the inner and outer diameter of the rings  
(in cm), respectively.  

 
Next line: 
Dpatth, Dpatphi  REAL 

In the case of rectangular array grid (i.e. if the variable Lattice is 
equal R) Dpatth and Dpatphi are the distances between centers of 
the patches (in cm) in the θ- and φ-directions, respectively. If the 
variable Lattice is equal H, I or F, this line has no meaning and 
thus  
Dpatth and Dpatphi can be arbitrary numbers. 

 
Next line: 
Modeexci   CHARACTER 

Modeexci determines the type of excitation: P or p means the plane 
wave excitation (traveling along the z-axis towards - ∞), H or h 
means that the curved FSS is excited by a horn.  

 
Next line: 
α1, α2,  PatternMode   REAL 

This line is characterization of the feed (horn) antenna: α1 and α2 
are the exponentials in the far-field approximation of the primary 
feed (horn antenna), see eq. (27). Patternmode represents the mode 
of calculating radiation pattern: Patternmode = 1 means that both 
the incident (primary antenna) field and the scattered field (from 
curved FSS) are calculated,  Patternmode = 0 means that only the 
scattered field (from curved FSS) is calculated, Patternmode = -1 
means that only the incident field from the primary (horn) antenna 
is calculated.  If the array is excited by the plane wave, this line has 
no meaning. 
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The next six lines are needed only when the call of the cFSSpat program is made. They are: 
 
 
Phimin, Phimax, Nphi  REAL, REAL, INTEGER 

The minimum and maximum angles of φ  (in deg) in the azimuthal 
plane, and the number of points that are calculated in the azimuthal 
pattern, respectively. The azimuthal plane is defined by θ = 900. 
 

Thetamin, Thetamax, Ntheta  REAL, REAL, INTEGER 
The minimum and maximum angles of θ  (in deg) in the elevation 
plane, and the number of points that are calculated in the elevation 
pattern, respectively. 
 

Theta0, Phi0   REAL 
The values of the θ and φ coordinates (in deg) of the main beam, 
respectively. The E-field values of the radiation pattern are 
normalized by the amplitude of the E-field with Theta0 and Phi0 
coordinates. 
  

Typepolar   CHARACTER 
Typepolar denotes the type of polarization of radiation pattern. L 
or l means linear polarization,  C or c means circular polarization. 

 
 
If needed (i.e. if  Lattice  =  F), next  Npat x Nport  lines after one blank line are: 
 
Thetapat, Phipat    REAL, INTEGER, REAL 

Thetapat and Phipat represent the θ and φ coordinate (in degrees) 
of the center of each FSS element.  
 
 

 
6.1. 2  Description of the output files 
 
 
There are six output files: ‘cFSS.out’, ‘cFSSpat.out’, ‘Scat.dat’, ‘PatAz.dat’, ‘PatEl0.dat’ and 
‘PatEl90.dat’, and in them we can find data about the geometry as well as the calculated values 
of the forward scattered field (i.e. of the transmission coefficient), and of the radiation pattern in 
the elevation and azimuthal planes.  
 
cFSS.out  - output file of the cFSS program. The file contains data about the array geometry. 
The first part of the file contains the values of the input file. Therefore, it looks similar to the 
input file ‘cFSS.in’. The second part contains the calculated forward scattered field and the 
transmission coefficient. The first column is the working frequency (in GHz), the second column 
is the calculated transmission coefficient (in dB), the third and fourth column are the amplitude 
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(in dB) and the phase of the forward scattered field, and the fifth and sixth column are the 
amplitude (in dB) and the phase of the backward scattered field. 
 
cFSSpat.out - output file of the cFSSpat program.  The file contains data about the array 
geometry. The first part of the file contains the values of the input file. Therefore, it looks similar 
to the input file ‘cFSS.in’. The second part describes the array that is analyzed. It is a list of the 
all patch elements in the array with their coordinates and amplitude and phase of the patch 
current. First two columns are the patch number-coordinates, the third column is the number of 
the basis function on the considered patch, and the forth and fifth columns are the θ- and φ-
coordinate of the patch. The sixth and seventh columns are the amplitude and phase (in deg) of 
the considered basis function, respectively. 
 
Scat.dat - output file of the cFSS program. The file contains the calculated forward scattered 
field and the transmission coefficient. The first column is the working frequency (in GHz), the 
second column is the calculated transmission coefficient (in dB), the third and fourth column are 
the amplitude (in dB) and the phase of the forward scattered field, and the fifth and sixth column 
are the amplitude (in dB) and the phase of the backward scattered field. 
 
PatAz.dat - output file of the cFSSpat program. The file contains the field values in the 
azimuthal plane (the azimuthal plane is defined by θ = 900). The input values of variables 
Phimin, Phimax and Nphi determine the φ values in the azimuthal plane for which the radiation 
pattern is calculated. The field values are normalized with the field value with Theta0 and Phi0 
coordinates that are defined in the input file. The first and second columns are the θ and φ 
coordinates (in deg) for which the radiation pattern is calculated. If the chosen type of 
polarization is linear (parameter Typepolar in the input file), then the third and the fourth 
columns are the normalized θ- and φ -components of the electric field, respectively. If the chosen 
type of polarization is circular, then the third and the fourth columns are the normalized right-
hand circular polarization (RHCP) and left-hand circular polarization (LHCP) components of the 
electric field, respectively.  
 
PatEl0.dat - output file of the cFSSpat program. The file contains the field values in the 
elevation plane which is defined by φ = 00. The input values of variables Thetamin, Thetamax 
and Ntheta determine the θ  values in the elevation plane for which the radiation pattern is 
calculated. The field values are normalized with the field value with coordinates Theta0 and 
Phi0 that are defined in the input file. The first and second columns are the θ and φ coordinates 
(in deg) for which the radiation pattern is calculated. If the chosen type of polarization is linear 
(parameter Typepolar in the input file), then the third and the fourth columns are the normalized 
θ- and φ -components of the electric field, respectively. If the chosen type of polarization is 
circular, then the third and the fourth columns are the normalized right-hand circular polarization 
(RHCP) and left-hand circular polarization (LHCP) components of the electric field, 
respectively.  
 
PatEl90.dat - output file of the cFSSpat program. The file contains the field values in the 
elevation plane which is defined by φ = 900. The input values of variables Thetamin, Thetamax 
and Ntheta determine the θ  values in the elevation plane for which the radiation pattern is 
calculated. The field values are normalized with the field value with coordinates Theta0 and 
Phi0 that are defined in the input file. The first and second columns are the θ and φ coordinates 
(in deg) for which the radiation pattern is calculated. If the chosen type of polarization is linear 
(parameter Typepolar in the input file), then the third and the fourth columns are the normalized 
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θ- and φ -components of the electric field, respectively. If the chosen type of polarization is 
circular, then the third and the fourth columns are the normalized right-hand circular polarization 
(RHCP) and left-hand circular polarization (LHCP) components of the electric field, 
respectively.  
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